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Abstract—A novel implementation of periodic boundary condi-
tions incorporated into the finite-difference time-domain (FDTD)
technique in both orthogonal and nonorthogonal grids is pre-
sented in this paper. The method applied is a field-splitting ap-
proach to the discretization of the Floquet-transformed Maxwell
equations. As a result, computational burden is reduced and the
stability criterion is relaxed. The results of the two methods are
compared to experimental data.

Index Terms—FDTD, nonorthogonal, PBG, periodic media.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) technique is
a robust analysis tool applicable to a wide variety of

complex problems [1]. It is particularly useful when nonlin-
earities exist and transient analysis is required. Frequently,
problems are encountered in which a periodicity exists in one
or more dimension of the problem geometry, as illustrated
in Fig. 1(a). Taking advantage of this periodicity can lead
to greater efficiency and accuracy when solving the problem
numerically.

Typically, each periodic feature is referred to as a cell and
the periodicity of these cells is accounted for using Floquet
theory. For a normally incident plane wave, accounting for this
periodicity in either an orthogonal or nonorthogonal FDTD
method is quite straightforward as there is no phase shift
between each periodic cell [2]. However, when a plane-
wave source is obliquely incident, there is a cell-to-cell phase
variation between corresponding points in different unit cells
which causes the time-domain implementation to become more
difficult.

For oblique incidence plane waves, a Floquet field mapping
may be applied, which results in a set of mapped fields which
possess the same cell-to-cell field relations as exist for the
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Fig. 1. (a) Periodic geometry in thêx-direction with a plane-wave incident
at an angle�. (b) Typical cell of the computational grid.

normally incident unmapped fields [3]. The resulting equations
may add considerable complexity to the FDTD solution [4] and
lead to a more stringent stability relation for higher angles of
incidence. At present, the periodic methods which are available
have only been applied using the orthogonal FDTD method.

In this paper, the Floquet-mapped periodic FDTD equations
are solved using an alternative approach referred to as the split-
field update method. This technique is shown to be simple to
implement and a stability analysis shows the technique to have
a less strict stability criterion than previous implementations.
The split-field update method is then applied in a general
curvilinear space using the nonorthogonal FDTD technique.
The use of Floquet-mapped FDTD in nonorthogonal grids
may lead to further computational savings due to fewer and
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larger cells. The split-field update technique is validated by
comparison of the numerical results with measured data.

II. FORMULATION

The field components of a plane wave incident on a
two-dimensional material which is periodic in the-direction
[see Fig. 1(a)] will have a phase shift of the form
where , is the speed of light in free space, and

is the angle of propagation for the incident field. A set of
auxiliary variables is introduced which implicitly accounts for
this phase shift as [3]

(1)

where is the impedance of free space.
Substituting these expressions into Maxwell’s curl equations

maps the solution space such that there is no phase shift
between the computed fields at like positions in each periodic
cell. Boundary conditions at the periodic boundaries now con-
sist of constraining the tangential fields on opposing boundary
walls to be equivalent. The application of this mapping in
orthogonal and nonorthogonal grids is now demonstrated.

A. Orthogonal Grids

Substituting (1) into Maxwell’s curl equations leads to

(2)

(3)

(4)

Notice that the substitution of (1) has produced extra terms
(denoted by brackets) on the right-hand side of (2) and (4).
When (2) and (4) are discretized, the presence of these extra
terms leads to difficulty. One difficulty arises due to the
appearance of the time derivative on both sides
of these equations. Another difficulty arises because the right-
hand sides are no longer spatially aligned. These difficulties
may be overcome by introducing dual grids in time and
multiple grids in space [4].

In this paper, an alternate approach is taken which is numer-
ically stable, efficient, and applicable in either orthogonal or
nonorthogonal grids. The technique used here will be referred
to as the split-field update method. Equation (2) is now “split”
into two parts by defining where

(5)

and

(6)

Equation (4) is split similarly by defining where

(7)

and

(8)

Substituting the split forms of and along with (8) into
(6) and solving then gives

(9)

Equations (3), (5), and (7)–(9) are discretized using a spa-
tially interleaved Yee lattice [7] (see Fig. 1(b)]. Furthermore,
a dual time grid is introduced such that each field component
of both and is computed at each half time step. Note
that the time derivatives are applied using central differencing
in time as usual, but now these updates are computed at each
half time step. Spatial alignment required in (8) and (9) is
accomplished by field averaging, which provides second-order
accurate results without resorting to multiple spatial grids. The
resultant update equations are

(10)

(11)

(12)

(13)

(14)

where

Implementation of (10)–(14) showed this technique to be
stable for all angles under 90.

B. Stability Analysis

In this section, a stability analysis is performed via a Von
Neumann technique. Specifically, the fields , , and
are initially expanded as a set of plane waves with phase
constants and . Inserting these field expressions into the
combined field updates in (10)–(14) for a fixed, leads to
the second-order difference equation

(15)
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where is the identity matrix,

(16)

(17)

and

(18)

where arises from the field averaging. This can be reduced
to a first-order equation by introducing the vectors [5]

(19)

which leads to

(20)

Stability of the first-order equation requires ,
where is the spectral radius of . Due to the
characteristics of , if , it will follow that

. The spectral radius of is governed by its
largest eigenvalue. This is found to be (21), shown at the
bottom of the page.

Stability requires for all . By
inspection, the maximum with respect to occurs at

. The most restrictive is not apparent by inspection. By
setting the derivative of (21) with respect to equal to zero,
it can be shown that the maximum value of (21) occurs when

where is defined in (22), shown at the bottom of the
page, with . Finally, constraining
leads to the stability criterion (23), shown at the bottom of
the page, where is determined from (22). For , (23)
reduces to the classical CFL as should be expected.

Equation (23) is an exact stability relation for the algorithm
previously described in this section. It is observed that as
increases, the stability of the current algorithm is considerably
relaxed, as compared to the algorithm presented in [3]. For the
square-cell case, Fig. 2 illustrates the ratio, defined as, of

Fig. 2. Stability relation scale factorK� as determined from stability anal-
ysis and experimental data.

the maximum allowable established by (23) to that of the
algorithm in [3] as increases from 0to 90 . It is observed
that nearly a factor of three improvement is realized for larger
angles of incidence. This was verified experimentally through
FDTD simulations, the results of which are also plotted in
Fig. 2. The stability criterion of (23) requires an infinitely
small time step at grazing, therefore, other methods may be
more practical at extremely large angles.

C. Nonorthogonal Grids

The split-field update method is now applied in a coordinate
system which is nonorthogonal in two dimensions with general
curvilinear axes . These axes are defined on a
local basis by the unitary vectors , and with
everywhere orthogonal to both and . In the general
curvilinear space, the covariant field values are tangential
to the unitary vectors and are designated by subscripts. The
contravariant field vectors are normal to the cell faces whose
edges are defined by the unitary vectors and are designated by
superscripts. In the orthogonal space, a solution of the form
of (1) was assumed. This solution is now projected onto the
general curvilinear axes. The mapping of (1) becomes

(24)

(21)

(22)

(23)
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where

In (24), and represent the -directed component of
the normalized unitary vectors and , respectively. An
equivalent expression to (24) is also used for the contravariant
field components.

The mapping of (24) is substituted into the differential form
of Maxwell’s equations in general curvilinear coordinates [6].
For the case, this gives

(25)

(26)

(27)

Notice that the substitution of (24) has produced extra terms
(denoted by brackets) on the right-hand side of (25)–(27). Once
again, these terms lead to difficulties when these expressions
are discretized. The split-field approach is applied in order to
discretize these expressions as follows. Equation (25) is split
by defining where

(28)

(29)

In a like manner, (26) and (27) are split by defining
, where

(30)

(31)

(32)

(33)

Each covariant field component is projected from the con-
travariant field components by the relation

(34)

with and

(35)

In order to solve the auxiliary field expressions of (29), (31)
and (33), the split forms of , , and are substituted
into (29) giving

(36)

Equations (31) and (33) are then substituted into (36) and
rearranged to give a final expression for as

(37)

where

(38)

(39)

III. I NCORPORATION OF THEUNIAXIAL

PML ABSORBING-BOUNDARY CONDITION

In this paper, the geometry is periodic in one extent only,
the second dimension must be terminated with an absorbing-
boundary condition. Periodic structures may require extensive
simulation time due to the multiple reflections which occur
in setting up the modal distribution on the periodic body.
Therefore, an absorbing-boundary condition can cause signif-
icant error due to multiple reflections. The perfectly matched
layer (PML) absorbing-boundary condition has proven to be
far superior to other methods based on differential operators
[8]–[10]. The implementation of the uniaxial PML is straight-
forward [9], [10] and will only be briefly described here. It is
assumed that the grid is orthogonal in the outer region of the
problem space where the PML resides. Under this assumption,
the relevant equations become

(40)

(41)

where

Equation (40) is a typical FDTD update equation with loss
present. Equation (41) is implemented through the introduction
of an auxiliary variable. This procedure is described in detail
in [10].
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IV. I MPLEMENTATION

FDTD implementation of the nonorthogonal formulation
discussed above is presented here. The implementation is very
similar to the orthogonal grid case. Equations (28), (30)–(33),
and (37) are discretized using a spatially interleaved lattice.
Again, a dual time grid is utilized where each field component
is computed at each half time step. The resultant update
equations are shown in (42)–(47), at the bottom of the page,
where and are defined in (38) and (39) and

where

Note that all field values denoted by underscores are normal-
ized by edge length, while field values denoted by an overscore
are weighted by edge length and are reciprocals of edge
length.

Spatial averaging is required to spatially align the fields
of (45)–(47) as well as the projection operators and the
vector components and . Notice that while the auxiliary
variables computed in (46) and (47) must be computed at each
half time step, it is not required that they be stored since each
update is independent of the past value of the variable. These
variables are merely a mathematical convenience.

An exact form for the stability criterion of this method
was not derived for nonorthogonal grids. Instead, the stability
criterion of irregular nonorthogonal grids [11] was scaled
accordingly using the normalized stability criterion derived
previously for orthogonal grids giving

(48)

where and the sup operator denotes the max-
imum value throughout all space. This approximation was
found to be a conservative guideline for the grids analyzed.

Fig. 3. Cross section of a slab of two-dimensional photonic bandgap ma-
terial.

V. VERIFICATION

The methods described in this paper were implemented in
two numerical analysis codes and verified by studying the scat-
tering properties of a photonic bandgap (PBG) structure. PBG
material is the electromagnetic equivalent of the electronic
crystal. Many applications exist for these materials including
nonmetallic reflectors for antennas [12]. Distinct bandgaps
exist in these materials in which no energy will propagate
in the crystal at any angle of incidence. This study is not
intended to be an exhaustive study of these materials, but
simply a verification of the accuracy of this method. The
geometry which was studied is illustrated in Fig. 3. Each unit
cell consists of four infinitely long dielectric rods with a radius
of mm and a dielectric constant of . The
rods are arranged in a square lattice such that the center-to-
center separation distanceis equal to the unit cell width
where mm. A plane-wave source was injected into
the Floquet-mapped space using a plane-wave injector of

the form , as explained in [1]. To measure
the transmitted field, the mapped fields were integrated in
a straight line across a single period in the Floquet-mapped
space. Simulations were run at angles of incidence of 0–50
and experimental data (transmission coefficient) is provided
where available.

(42)

(43)

(44)

(45)

(46)

(47)
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(a)

(b)

Fig. 4. Transmission coefficient of four rod deep photonic bandgap structure
for a plane-wave incident at 0�. (a) Magnitude. (b) Phase. Periodic cell is
9-mm wide and rod diameter is 4 mm,"r = 4:2.

This structure was analyzed using both the orthogonal
and nonorthogonal implementations formulated in this paper.
The orthogonal FDTD code is based on (10)–(14) with each
dielectric rod discretized at 16 cells mm across
the diameter of rod. The grid dimensions were 38228,
including a 10-cell PML region at the two-directed walls.
Tests were run which showed that the numerical solution
had converged at this discretization. In the nonorthogonal
FDTD based on (42)–(47), only six cells across the diameter
of the dielectric rods were used and the grid dimensions
in were 18 104 cells, including a ten-cell PML region.
For each case, the PML parameters were optimally chosen
based on [9]. Measured data was collected using an automated
network analyzer and a focus beam measurement system. The
dimensions of the periodic model used for measurements were
0.51 m 0.20 m and the focus beamwidth at the periodic
surface was 0.061 m at 8 GHz.

Figs. 4–6 illustrate the level of agreement between the two
numerical methods as well as with the measured data. In each
case, the level of agreement is quite good and a clear bandgap
of at least 10 dB is indicated. The error is very small for
either case and probably within the margin of measurable
accuracy. When running on a 200-MHz Pentium processor and
using a 20 incident field excitation, the nonorthogonal grid
code required 1 min to execute while the finely discretized
orthogonal grid implementation required 3 min. The orthogo-
nal implementation of this method was stable for all angles of

(a)

(b)

Fig. 5. Transmission coefficient of four rod deep photonic bandgap structure
for a plane-wave incident at 20�. (a) Magnitude. (b) Phase. Periodic cell in
9-mm wide and rod diameter is 4 mm,"r = 4:2.

incidence less than 90. The nonorthogonal method was stable
for angles of incidence less than 60. For angles greater than
60 , the method tended to become unstable in the late time.
Similar instabilities are documented for the nonorthogonal
FDTD method in an unmapped space in [13].

VI. CONCLUSION

A novel implementation of Maxwell equations in a Floquet-
transformed space was introduced. This split-field update
method was shown to be efficient and simple to implement
in both orthogonal and nonorthogonal grids. The stability cri-
terion was derived for orthogonal grids and was more relaxed
than previous implementations in the Floquet-transformed
space. It was shown that the nonorthogonal FDTD when
applied using the split-update method in a Floquet-transformed
space resulted in an accurate solution with a much coarser
discretization. By comparison of the results from the numerical
analysis with measured data, the split-update method was
found to be accurate in both orthogonal and nonorthogonal
grids. The methods introduced are currently being extended to
a three-dimensional space.
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(a)

(b)

Fig. 6. Transmission coefficient of four rod deep photonic bandgap structure
for a plane-wave incident at 50�. (a) Magnitude. (b) Phase. Periodic cell is
9-mm wide and rod diameter is 4 mm,"r = 4:2.
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