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Abstract—A novel implementation of periodic boundary condi-
tions incorporated into the finite-difference time-domain (FDTD) | Linde Cali
technique in both orthogonal and nonorthogonal grids is pre-
sented in this paper. The method applied is a field-splitting ap-
proach to the discretization of the Floquet-transformed Maxwell
equations. As a result, computational burden is reduced and the

stability criterion is relaxed. The results of the two methods are - e
compared to experimental data. -t

T . T
Index Terms—FDTD, nonorthogonal, PBG, periodic media. ) _~—~':_'.:~F"'_-
_,—'—"'_------'-- =T
[. INTRODUCTION — .
HE finite-difference time-domain (FDTD) technique is . I".
a robust analysis tool applicable to a wide variety of ¥4 \

complex problems [1]. It is particularly useful when nonlin-
earities exist and transient analysis is required. Frequently & x

problems are encountered in which a periodicity exists in one @)
or more dimension of the problem geometry, as illustrated

in Fig. 1(a). Taking advantage of this periodicity can lead

to greater efficiency and accuracy when solving the problem

numerically. gfi,j

Typically, each periodic feature is referred to as a cell and
the periodicity of these cells is accounted for using Floquet Pzij 0
theory. For a normally incident plane wave, accounting for this ’ Yij
periodicity in either an orthogonal or nonorthogonal FDTD (b)

method is quite straightforward as there is no phase shift .. o ) .
L Ig. 1. (&) Periodic geometry in thiaedirection with a plane-wave incident
between each pe!‘IOdIC f:el! [2]. Howe_Verv when a plangean angles. (b) Typical cell of the computational grid.
wave source is obliquely incident, there is a cell-to-cell phase
variation between corresponding points in different unit cells o ] ) .
which causes the time-domain implementation to become méf@mally incident unmapped fields [3]. The resulting equations
difficult. may add considerable complexity to the FDTD solution [4] and
For oblique incidence plane waves, a Floquet field mappir!\%a_d to a more stringent stab_ility relation for h?gher angle_s of
may be applied, which results in a set of mapped fields whidpeidence. At present_, the p_enodlc methods which are available
possess the same cell-to-cell field relations as exist for ti@ve only been applied using the orthogonal FDTD method.
In this paper, the Floquet-mapped periodic FDTD equations
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was supported in part by the National Science Foundation through the Nfield update method. This technique is shown to be simple to
CAREER Award ECS-9624628 and the Army Research Office under Contr@ﬁﬁmement and a stability analysis shows the technique to have
DAAHO4-94-G-0243 with the University of Kentucky. . . N . . .
J. A Roden, M. P. Kesler, J. G. Maloney, and P. H. Harms are wif@ /€SS strict stability criterion than previous implementations.
Signature Technologies Laboratory, Georgia Tech. Research Institute, Atlarkfle split-field update method is then applied in a general

GA 30332 USA. curvilinear space using the nonorthogonal FDTD technique.

S. D. Gedney is with the Department of Electrical Engineering, Universi ; .
of Kentucky, Lexington, KY 40506-0046 USA. Yhe use of Floquet—mapped.FDTD in nonorthogonal grids
Publisher Item Identifier S 0018-9480(98)02753-7. may lead to further computational savings due to fewer and

0018-9480/98$10.001 1998 IEEE



RODEN et al. TIME-DOMAIN ANALYSIS OF PERIODIC STRUCTURES AT OBLIQUE INCIDENCE 421

larger cells. The split-field update technique is validated Wyguation (4) is split similarly by defining, = QZ+Q,‘; where
comparison of the numerical results with measured data.
. N?‘Qg oF,
JWw——" = ——

7
Il. FORMULATION Vo Jz Q)
The field components of @M, plane wave incident on a
two-dimensional material which is periodic in thedirection
[see Fig. 1(a)] will have a phase shift of the forer/*-* ,  sinfP.
wherek, = %{;‘9 vg IS the speed of light in free space, and Qy = T (8)

@ is the angle of propagation for the incident field. A set of
auxiliary variables is introduced which implicitly accounts fo%ubstituting the split forms oP, and @, along with (8) into

this phase shift as [3] (6) and solvingP. then gives
E ¢ ikev
p==_ pe in 6
o Po= g T g ©
Qac = er_']klx - Ertr r Hr
Q, = Hye ke 1

Equations (3), (5), and (7)—(9) are discretized using a spa-
tially interleaved Yee lattice [7] (see Fig. 1(b)]. Furthermore,
& dual tirge gridﬂis introduced such that each field component

oth P and (} is computed at each half time step. Note
at the time derivatives are applied using central differencing
time as usual, but now these updates are computed at each
If time step. Spatial alignment required in (8) and (9) is
complished by field averaging, which provides second-order
accurate results without resorting to multiple spatial grids. The
resultant update equations are

wherery is the impedance of free space.

Substituting these expressions into Maxwell’s curl equatio
maps the solution space such that there is no phase s
between the computed fields at like positions in each perio&
cell. Boundary conditions at the periodic boundaries now coj-
sist of constraining the tangential fields on opposing bound
walls to be equivalent. The application of this mapping i
orthogonal and nonorthogonal grids is now demonstrated.

A. Orthogonal Grids

n n—1 n—1i n—1
o . . P = pa d’%(,.?— )
Substituting (1) into Maxwell’s curl equations leads to o s T\ Qu = Quiy

y n—1y n—1L )
P, 0Q, 0Q: . siné - dm( #ig ~ Qs (10)
jw = - + 1 jw——Qy 2) , ne1 n—1
w Oz Oy v no=Qut-w (P -P)
i, 4 T, j 2,7 i, i1 i, 3
jw prQe 0P 3) - N o
Vo ay Yi i i +bi,j(PZz‘+12,j _Pzi,jz) (12)
@y OF . sinf P 4 M( a’ Qe )
] = jw——DP, 5. 4 n Zi, e NVYi, g Yi=1,j
Je Vo ax + v Vo ( ) Pzi,j = : 1— inz [ : (13)
Hor€r
Notice that the substitution of (1) has produced extra terms o sin

(denoted by brackets) on the right-hand side of (2) and (4). Qy., = 2 (PL.,,+P5) (14)

When (2) and (4) are discretized, the presence of these extra

terms leads to difficulty. One difficulty arises due to theyhere

appearance of the time derivatiygw < 9/9t) on both sides

of these equations. Another difficulty arises because the right;  voA;  ,  woldy ., vl o LAY

hand sides are no longer spatially aligned. These difficulties-7 — ¢, A, "7 7 ¢, A, 597 A, 0T AL

may be overcome by introducing dual grids in time and

multiple grids in space [4]. Implementation of (10)—(14) showed this technique to be
In this paper, an alternate approach is taken which is numetable for all angles under 90

ically stable, efficient, and applicable in either orthogonal or

nonorthogonal grids. The technique used here will be referrgd o .

to as the split-field update method. Equation (2) is now “split”™ Stability Analysis

into two parts by defining?. = P2 + P where In this section, a stability analysis is performed via a Von
Neumann technique. Specifically, the fiel@s, @,, and P.
ij,Pg _9Qy  9Q (5) are initially expanded as a set of plane waves with phase
Vo Oz Iy constantst, andk,. Inserting these field expressions into the

combined field updates in (10)—(14) for a fixéd; leads to
the second-order difference equation
_ sin 0Q), (©)
& x"t = —2j[Alx™ + [[]x"" 2 (15)

and

Pt
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where[/] is the identity matrix,j = +/—1 3 p—————————————————
sin 8Y C GYC Y
0 SCI%SQ c cos 9 ® Measured
[A] = UoAt 0 cos? ¢ T cosZ @ (16) —— Analytic
Y -X(14Sg) eie
x" = Qs an X7
and
keAg (kA
X =sin JA; Y =sin| L2 ) /A,
2 2 i o b e
kAL 0 15 30 45 60 75 90
= 18
© COS( 2 ) (18) 0 (degrees)
whereC arises from the field averaging. This can be reducet). 2. Stability relation scale factdky as determined from stability anal-
to a first-order equation by introducing the vectors [5] ysis and experimental data.
n+i n
ytE = {X L } v = { f_;} (19) the maximum allowable\, established by (23) to that of the
X X e algorithm in [3] asf increases from Oto 9C°. It is observed
which leads to that nearly a factor of three improvement is realized for larger
Al 1 angles of incidence. This was verified experimentally through
y'te = [Mly" [M]= {_2‘—]’[ Il ]} (20) FDTD simulations, the results of which are also plotted in
[ 0 Fig. 2. The stability criterion of (23) requires an infinitely
Stability of the first-order equation requirgg[//]) < small time step at grazing, therefore, other methods may be
where p([M]) is the spectral radlus ofM]. Due to the more practical at extremely large angles.
characteristics of M], if p([4]) < it will follow that

p([M]) < 1. The spectral radius o[fA] is governed by its C. Nonorthogonal Grids
largest eigenvalue. This is found to be (21), shown at theThe split-field update method is now applied in a coordinate

bottom of the page. system which is nonorthogonal in two dimensions with general
Stability requires|A\yax(kz, ky)| < 1 for all k,, k,. By curvilinear axes(uy, us, u3). These axes are defined on a
inspection the maximum with respect kg occurs atk, = local basis by the unitary vecto,;, d,, and a3 with as

~-. The most restrictivé:, is not apparent by inspection. Byeverywhere orthogonal to both; and @,. In the general
settlng the derivative of (21) with respect kg equal to zero, curvilinear space, the covariant field values are tangential
it can be shown that the maximum value of (21) occurs whean the unitary vectors and are designated by subscripts. The
ky = i—i where¢ is defined in (22), shown at the bottom of thecontravariant field vectors are normal to the cell faces whose
page, witha = (A,/A,)%. Finally, constraining\max| < 1  edges are defined by the unitary vectors and are designated by
leads to the stability criterion (23), shown at the bottom afuperscripts. In the orthogonal space, a solution of the form
the page, wher¢ is determined from (22). Fo# = 0, (23) of (1) was assumed. This solution is now projected onto the

reduces to the classical CFL as should be expected. general curvilinear axes. The mapping of (1) becomes
Equation (23) is an exact stability relation for the algorithm Ese—i(Arui+faus)

previously described in this section. It is observed that as P; =

increases, the stability of the current algorithm is considerably o

relaxed, as compared to the algorithm presented in [3]. For the Q1 = Hye /i)

square-cell case, Fig. 2 illustrates the ratio, define& asof Qo = Hye™i(Pruntfzuz) (24)

|sin@| X C + \/Sln X202 + (X2 + YQ)COSQ 6

|)\max(k5w7 ky)| = v\ cos2 0 (21)
NERRE: sin® 6(4a + 2) — \/Sin2 f(a — sin? 6) + 1 -
= ]l =Al2
S sin?0(2 + 3a) + a 22)
2
A, < 1 A, cos” 6 (23)

Yo |sin A]sin & cos & + \/sm 6 sin’ € cos? & 4 (sin® & + a)cos? 6
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where In order to solve the auxiliary field expressions of (29), (31)
and (33), the split forms of;, Q', and ? are substituted
B =k a1e fo =k - ape. into (29) giving

P? — PP)¢, = —Zsin 0Qo, — 0Q10
In (24), a1, and aq, represent the:-directed component of ( e \/ﬁsm @2 \/ﬁsm @

the normalized unitary vectorg; and a,, respectively. An
equivalent expression to (24) is also used for the contravariant + —Slne{zng Q“’ }
field components. i=1

The mapping of (24) is substituted into the differential form as ‘
of Maxwell's equations in general curvilinear coordinates [6]. - —xsin9{29i1(Qw)}- (36)
For the TM, case, this gives V9 i=1

. 1 /8Qy 00, Equations (31) and (33) are then substituted into (36) and
jwv—7P3 = \/_ <W — W) rearranged to give a final expression B¢ as
0 1 2
—+ {Jw Sl ai QQ / 119 a9 Ql} (25) P3 — Q2 sin Qla + alac sin 8 QQa
voyg T gt P = - (f ) (37)
. 1—sinf{ 22z M; — ‘“lMQ
jwlror = _ Lo { sin 6 a2wP3} (26) v v
o \/_ 81@ Uo\/_ h
. 1 OP. 6 where
julrgr= 29y {,.w sin alxpg} 27)
Vo \/_ U1 v/ M a2z5in 0911 @1pg215in6 (38)
1= -
Notice that the substitution of (24) has produced extra terms erit ”\/,g 6”H7’ﬁ
(denoted by brackets) on the right-hand side of (25)—(27). Once M, = 2229 12500 010510 092 (39)
again, these terms lead to difficulties when these expressions Ertir/g €rttr/9

are discretized. The split-field approach is applied in order to
discretize these expressions as follows. Equation (25) is split IIl. T NCORPORATION OF THEUNIAXIAL
by defining P? = P3a + P3 where PML ABSORBINGBOUNDARY CONDITION
In this paper, the geometry is periodic in one extent only,
. e, P3e 1 /0@y 0 28 the second dimension must be terminated with an absorbing-
i vo \/—< ) (28) boundary condition. Periodic structures may require extensive

8u1 B 81@
simulation time due to the multiple reflections which occur

36 _ Nz
P 67\/581119(22 - 7\/5751119(21 (29) in setting up the modal distribution on the periodic body.
Therefore, an absorbing-boundary condition can cause signif-
In a like manner, (26) and (27) are split by definifj = icant error due to multiple reflections. The perfectly matched
Q' + QY Q? = Q% + Q% where layer (PML) absorbing-boundary condition has proven to be
far superior to other methods based on differential operators
Qe 1 [OPs [8]-[10]. The implementation of the uniaxial PML is straight-
Jo— = <W) (30) forward [9], [10] and will only be briefly described here. It is
° \{g 2 assumed that the grid is orthogonal in the outer region of the
QY = ———Z ¢inbPs (31) problem space where the PML resides. Under this assumption,
Hr/9 the relevant equations become
@1 (0P
Jw (32)
Vo f Juy Qe 1 (0P
JWw———S = ——| — (40)
Q% = sin 6 Ps. (33) v, NACLE
“”\/5 P 1 (00, 10Q
jw 2o (41)
Each covariant field component is projected from the con- v Va\du s dus
travariant field components by the relation
where
2 ) 1 o
F; = Z!MFJ (34) sz2=14 5

_ Equation (40) is a typical FDTD update equation with loss
with g;; = a; - a4; and present. Equation (41) is implemented through the introduction
of an auxiliary variable. This procedure is described in detalil

Vg = a3 - (a1 X G2). (35) in [10].
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IV. IMPLEMENTATION

FDTD implementation of the nonorthogonal formulation
discussed above is presented here. The implementation is very
similar to the orthogonal grid case. Equations (28), (30)—(33),
and (37) are discretized using a spatially interleaved lattice.
Again, a dual time grid is utilized where each field component
is computed at each half time step. The resultant update
equations are shown in (42)—(47), at the bottom of the page,
where M, and M, are defined in (38) and (39) and

Detail

N 2a
A
.\
"\y o
I}
Vol o vo Ay

= ] — T =
\/567‘ \/5“" Fig. 3. Cross section of a slab of two-dimensional photonic bandgap ma-
terial.

di,j =

where

9ij = @@ VG = bs (01 X Bo). V. VERIFICATION
Note that all field values denoted by underscores are normalThe methods described in this paper were implemented in
ized by edge length, while field values denoted by an overscejg, numerical analysis codes and verified by studying the scat-
are weighted by edge length afld; are reciprocals of edge tering properties of a photonic bandgap (PBG) structure. PBG
length. o _ _ _ __material is the electromagnetic equivalent of the electronic
Spatial averaging is required to spatially align the fieldgystal, Many applications exist for these materials including
of (45)~(47) as well as the projection operatgts and the nonmetallic reflectors for antennas [12]. Distinct bandgaps
vec_tor componentshf andas, . Notice that while the auxiliary qyist in these materials in which no energy will propagate
variables computed in (46) and (47) must be computed at egghye crystal at any angle of incidence. This study is not
half time step, it is not required that they be stored since eaghanded to be an exhaustive study of these materials, but
update is independent of the past_ value of th_e variable. Thes?r‘?]ply a verification of the accuracy of this method. The
variables are merely a mathematical convenience. geometry which was studied is illustrated in Fig. 3. Each unit

An exact form for the stability criterion of this methOd_ceII consists of four infinitely long dielectric rods with a radius

was not derived for nonorthogonal grids. Instead, the stab|I|§' o = 2mm and a dielectric constant af. = 4.2. The

cr|ter|o_n of wrggular nonorthqgonal gr!t_js [1.1] was S‘Cf”‘ledods are arranged in a square lattice such that the center-to-
accordingly using the normalized stability criterion derive ; . . ) .
center separation distandeis equal to the unit cell width

previously for orthogonal grids giving whereb = 9.0 mm. A plane-wave source was injected into
the Floguet-mapped space using a plane-wave injector of

Ky(l —siné
AV 0(—2) (48) the form F(t— %ﬁfa , as explained in [1]. To measure
USUP\/Ez:l?“ the transmitted field, the mapped fields were integrated in

a straight line across a single period in the Floquet-mapped
whereg”/ = [g,;]7 and the sup operator denotes the maspace. Simulations were run at angles of incidence®eb0
imum value throughout all space. This approximation wamd experimental data (transmission coefficient) is provided
found to be a conservative guideline for the grids analyzedwhere available.

n n—1 — p—1 L 1 1
ngl’ll - Rgfj + dl,j (Q2i7 j2 - QQ{-?, 7 - Qli, _7'2 + Qli, _7'2—1> (42)
Q=@ b '(Pn_% - Pn_%) (43)
T g 4 I\ 13 41 3
Q) = Q™ by (Pt - 1) (44)
Fi g T g 4\ Bt 3

3" ‘Pi?:l}n B 256171’135 {GQJ"{’ J (Glai, J + Glai, j—l) - Al (@2117', j + @2(1{_1, _7)}
Pi,j = . as, a1a (45)
1- Slne(ﬁMl - WMQ)

n I} sin6

Qibj - 211\/5 (@20, 3 B3, o0 + 020, B5 ) (46)
o 17 sind . .
@ =3 (@101, 5,00+ G, B ) (47)

" 24y \/g
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Fig. 4. Transmission coefficient of four rod deep photonic bandgap structLE
for a plane-wave incident at°0 (a) Magnitude. (b) Phase. Periodic cell is
9-mm wide and rod diameter is 4 mm, = 4.2.

%. 5. Transmission coefficient of four rod deep photonic bandgap structure
for a plane-wave incident at 20(a) Magnitude. (b) Phase. Periodic cell in
9-mm wide and rod diameter is 4 mm, = 4.2.

This structure was analyzed using both the orthogonakidence less than 90The nonorthogonal method was stable
and nonorthogonal implementations formulated in this papder angles of incidence less than“6@ror angles greater than
The orthogonal FDTD code is based on (10)-(14) with ea@®®, the method tended to become unstable in the late time.
dielectric rod discretized at 16 cel{g\; = 0.25 mm) across Similar instabilities are documented for the nonorthogonal
the diameter of rod. The grid dimensions were 88228, FDTD method in an unmapped space in [13].
including a 10-cell PML region at the twg-directed walls.

Tests were run which showed that the numerical solution VI. CONCLUSION

had converged at this discretization. In the nonorthogonalA novel implementation of Maxwell equations in a Floguet-

FDTD based on (42)~(47), only six cells across the dIamGIt%nsformed space was introduced. This split-field update

of the dielectric rods were used and the grid dlmens"Orr]ﬁethod was shown to be efficient and simple to implement

in were 18 x 104 cells, including a ten-cell PML region.. ; - :
. in both orthogonal and nonorthogonal grids. The stability cri-
For each case, the PML parameters were optimally chosen . .
. ripn was derived for orthogonal grids and was more relaxed
based on [9]. Measured data was collected using an automaiée . ; X .
an previous implementations in the Floquet-transformed
network analyzer and a focus beam measurement system. The
. ; - space. It was shown that the nonorthogonal FDTD when
dimensions of the periodic model used for measurements wefe : . .
: . .applied using the split-update method in a Floquet-transformed
0.51 mx 0.20 m and the focus beamwidth at the periodiC ; . .
Space resulted in an accurate solution with a much coarser
surface was 0.061 m at 8 GHz.

Figs. 4-6 illustrate the level of agreement between the tV(\?(l)scretlzatlon. By comparison of the results from the numerical

numerical methods as well as with the measured data. In eaaqaly&s with measured data, the split-update method was

. : ound to be accurate in both orthogonal and nonorthogonal

case, the level of agreement is quite good and a clear band an : :

R : rids. The methods introduced are currently being extended to
of at least 10 dB is indicated. The error is very small fo X .

. o ; three-dimensional space.

either case and probably within the margin of measurable
accuracy. When running on a 200-MHz Pentium processor and
using a 20 incident field excitation, the nonorthogonal grid
code required 1 min to execute while the finely discretized The authors express their appreciation to Dr. J. Meadors
orthogonal grid implementation required 3 min. The orthog@and the Signature Technologies Laboratory, Georgia Tech.
nal implementation of this method was stable for all angles &esearch Institute (GTRI) for supporting this work. Gratitude
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